Text

Automatiserade mjukvaruspråkutveckling och mjukvaruteknik

Säkerhetskritisk teknik

Certifierbara bevis och justifieringsteknik

Lärande och optimering

Komplexa inbyggda system i realtid

Industriell programvaruteknik

Formell modellering och analys av inbyggda system

Teknisk matematik

Cyber-fysisk systemanalys

Datakommunikation

Digitalisering

Heterogena system

Förnybar energi

Artificiell intelligens och intelligenta system

Resurseffektivisering

Programvarutestlaboratorium

Programmeringsspråk

Modellbaserad konstruktion av inbäddade system

Medicinsk teknik

MobiFog: mobility management in Fog-assisted IoT networks

MobiFog focuses on designing novel mobility management protocols for IoT networks through enhancing the IoT architecture, enriching by the Fog computing concept.

Start

2019-01-01

Planerat avslut

2022-12-31

Huvudfinansiering

Forskningsområde

Projektansvarig vid MDU

No partial template found

Background

Traditional IoT networks generated by wireless sensor networks were using static nodes, whereas future IoT networks will require mobility of nodes. The efforts on standardizing Internet Protocols at the IETF for IoT networks were neglecting mobility management protocols. Most standard mobility management protocols such as Mobile IPv6 and its variants have high signaling overhead owing to tunneling and binding operations and are considerably complex, incurring high processing overhead. Additionally, the current standard mobility management protocols are neglecting constrained networks with limitations in channel bandwidth, packet size, sleep mode and unreliable links.

Goal of the project

MobiFog focuses on designing novel mobility management protocols for IoT networks through enhancing the IoT architecture, enriching by the Fog computing concept. We are envisioning a mobility management solution for constrained networks that encompasses (i) efficient hand-off algorithms for smooth transitions of mobile nodes through a cooperative decision making by the mobile node and the software defined networking controller, and (ii) dynamic scheduling of data transmission through designing on-the-fly scheduling modules. This project will involve extensive probabilistic analysis and optimization algorithms, followed by emulations and real-world experiments for verification.

 

Till toppen