Text

Industriell programvaruteknik

Innovationsledning

Komplexa inbyggda system i realtid

Learning, Inclusive education, School transitions – for All (LISA)

Lärande och optimering

Modellbaserad konstruktion av inbäddade system

M-TERM - Mälardalen University Team of Educational Researchers in Mathematics

Forskargruppen MIND (Mälardalen INteraction and Didactics)

Personcentrerad vård och kommunikation

Programmeringsspråk

Programvarutestlaboratorium

Samhällsvetenskapernas didaktik och pedagogiska praktiker

Språk- och litteraturvetenskap samt ämnenas didaktik

Statsvetenskap

Stokastiska processer, statistik och finansmatematik

Säkerhetskritisk teknik

Teknisk matematik

Vård, återhämtning och hälsa

Artificiell intelligens och intelligenta system

Certifierbara bevis och justifieringsteknik

Cyber-fysisk systemanalys

Digitalisering av framtidens energi

Formell modellering och analys av inbyggda system

Förnybar energi

Försörjning och skuldsättning

Heterogena system

Industriella AI-system

Computational Intelligence in Process Modelling and Prediction

This project aims to exploit a hybrid approach using learning techniques based on computational intelligence to build knowledge-based models and associated reasoning mechanisms for process modeling, prediction and classification.

Avslutat

Start

2012-01-01

Avslut

2013-12-31

Forskningsinriktning

Projektansvarig vid MDU

No partial template found

Description of the project

Process modeling and prediction presents a crucial issue to develop adaptive strategies in coping with industrial manufacturing and production lines. However, complex processes in industry are often hard to model using conventional mathematical techniques and algorithms on their own.

This project aims to exploit a hybrid approach using learning techniques based on computational intelligence to build knowledge-based models and associated reasoning mechanisms for process modeling, prediction and classification.

The key techniques employed in the research will include: fuzzy computing, case-based reasoning, nature-inspired optimization, and perhaps also probabilistic inference to accommodate stochastic property of processes.