Course syllabus - Machine Learning With Big Data
Scope
7.5 credits
Course code
DVA453
Valid from
Autumn semester 2019
Education level
Second cycle
Progressive Specialisation
A1N (Second cycle, has only first-cycle course/s as entry requirements)
Main area(s)
Computer Science
School
School of Innovation, Design and Engineering
Ratified
2017-01-31
Revised
2019-01-25
Literature lists
Course literature is preliminary up to 8 weeks before course start. Course literature can be valid over several semesters.
-
Books
Understanding machine learning: from theory to algorithms
ISBN: 978-1-107-05713-5
An Introduction to Statistical Learning: with Applications in R
ISBN: 978-1-4614-7138-7
Case-Based Reasoning A Textbook
Feature extraction [electronic resource] : foundations and applications / Isabelle Guyon ... [et al.] (eds.).
Big Data Concepts, Theories, and Applications
ISBN: 978-3-319-27763-9
Learning Spark : Lightning-Fast Big Data Analytics [electronic resource]
Introduction to Machine Learning with Python
ISBN: 9781449369415
Python machine learning: unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analysis
ISBN: 1-78355-513-0
Data Science for Business : What You Need to Know about Data Mining and Data-analytic Thinking [electronic resource]
Articles
Big data analytics: a survey
A survey of open source tools for machine learning with big data in the Hadoop ecosystem
Challenges of Big Data analysis
Selection of relevant features and examples in machine learning
Feature selection for classification
Case-based reasoning: foundational issues, methodological variations, and system approaches
Retrieval, reuse, revision and retention in case-based reasoning
MLlib: machine learning in apache spark
Objectives
The rapid development of digital technologies and advances in communications have led to gigantic amounts of data with complex structures called 'Big data' being produced every day at exponential growth. The aim of this course is to give the student insights in fundamental concepts of machine learning with big data as well as recent research trends in the domain. The student will learn about problems and industrial challenges through domain-based case studies. Furthermore, the student will learn to use tools to develop systems using machine-learning algorithms in big data.
Learning outcomes
After completing the course, the student shall be able to:
1. describe the basic principles of machine learning and big data
2. demonstrate the ability to identify key challenges to use big data with machine learning
3. show the ability to select suitable Machine Learning algorithms to solve a given problem for big data
4. demonstrate the ability to use tools for big data analytics and present the analysis result
Course content
Module 1. Introduction and background: introduction is intended to review Machine Learning (ML) and Big Data processing techniques and related subtopics with focus on the underlying themes.
Module 2. Case studies: presents case studies from different application domains and discuss key technical issues e.g., noise handling, feature extraction, selection, and learning algorithms in developing such systems.
Module 3. Machine learning techniques in big data analytics: this module consists of basic understanding of learning theory, clustering analysis, deep learning and other classification techniques appropriate for development work and issues in construction of systems using Big Data.
Module 4. Data analytics with tools: presents open source tools e.g., KNIME and Spark with examples that guide through the basic analysis of Big Data.
Specific requirements
90 credits of which at least 60 credits in Computer Science or equivalent, including at least 15 credits in programming. In addition, Swedish course B/Swedish course 3 and English course A/English course 6 are required. For courses given entirely in English exemption is made from the requirement in Swedish course B/Swedish course 3.
Examination
Written assignment (INL1), (Module 1), 1,0 credit, (examines the learning outcome 1), marks Fail (U) or Pass (G)
Written assignment (INL2), (Module 2), 1,5 credits, (examines the learning outcome 2), marks Fail (U) or Pass (G)
Written assignment (INL3), (Module 3), 2,0 credits, (examines the learning outcome 3), marks Fail (U) or Pass (G)
Project (PRO1), (Module 4), 3 credits, (examines the learning outcome 4), marks Fail (U) or Pass (G)
A student who has a certificate from MDU regarding a disability has the opportunity to submit a request for supportive measures during written examinations or other forms of examination, in accordance with the Rules and Regulations for Examinations at First-cycle and Second-cycle Level at Mälardalen University (2020/1655). It is the examiner who takes decisions on any supportive measures, based on what kind of certificate is issued, and in that case which measures are to be applied.
Suspicions of attempting to deceive in examinations (cheating) are reported to the Vice-Chancellor, in accordance with the Higher Education Ordinance, and are examined by the University’s Disciplinary Board. If the Disciplinary Board considers the student to be guilty of a disciplinary offence, the Board will take a decision on disciplinary action, which will be a warning or suspension.
Grade
Two-grade scale