Course syllabus - Machine Learning With Big Data
Scope
7.5 credits
Course code
DVA453
Valid from
Autumn semester 2017
Education level
Second cycle
Progressive Specialisation
A1N (Second cycle, has only first-cycle course/s as entry requirements).
Main area(s)
Computer Science
School
School of Innovation, Design and Engineering
Ratified
2017-01-31
Literature lists
Course literature is preliminary up to 8 weeks before course start. Course literature can be valid over several semesters.
Objectives
The rapid development of digital technologies and advances in communications have led to gigantic amounts of data with complex structures called ‘Big data’ being produced everyday at exponential growth. The aim of this course is to give the student insights in fundamental concepts of machine learning with big data as well as recent research trends in the domain. The student will learn about problems and industrial challenges through domain-based case studies. Furthermore, the student will learn to use tools to develop systems using machine-learning algorithms in big data.
Learning outcomes
After completing the course, the student shall be able to:
1. describe and understand the basic principles of machine learning and big data
2. demonstrate the ability to identify key challenges to use big data with machine learning
3. show the ability to select suitable machine Learning algorithms to solve a given problem for big data
4. demonstrate the ability to use tools for big data analytics and present the analysis result
Course content
Module 1. Introduction and background: introduction is intended to review Machine Learning (ML) and BigData processing techniques and related subtopics with focus on the underlying themes.
Module 2. Case studies: presents case studies from different application domains and discuss key technical issues e.g., noise handling, feature extraction, selection, and learning algorithms in developing such systems.
Module 3. Machine learning techniques in big data analytics: this module consists of basic understanding of learning theory, association rule learning, clustering analysis and classification techniques appropriate for development work and issues in construction of systems using Big data.
Module 4. Data analytics with tools: presents open source tools e.g., KNIME and Spark with examples that guide through the basic analysis of big data.
Tuition
Online video-based lectures, problem-based learning, assigned readings of scientific articles (reading, searching the web), chat rooms/discussion forum.
Specific requirements
120 credits of which at least 80 credits in Computer Science and / or equivalent, including at least 30 credits in computer science or software development. In addition, at least 18 months of documented work experience in software development or related areas. In addition, Swedish course B/Swedish course 3 and English course A/English course 6 are required. For courses given entirely in English exemption is made from the requirement in Swedish course B/Swedish course 3.
Examination
Written assignment (INL1), (Module 1), 1,0 credit, (examines the learning objective 1), Marks Fail (U) or Pass (G)
Written assignment (INL2), (Module 2), 1,5 credits, (examines the learning objective 2), Marks Fail (U) or Pass (G)
Written assignment (INL3), (Module 3), 2,0 credits, (examines the learning objectives 3), Marks Fail (U) or Pass (G)
Exercise (ÖVN1), (Module 4), 3 credits, (examines the learning agreement 4), Marks Fail (U) or Pass (G)
A student who has a certificate from MDU regarding a disability has the opportunity to submit a request for supportive measures during written examinations or other forms of examination, in accordance with the Rules and Regulations for Examinations at First-cycle and Second-cycle Level at Mälardalen University (2020/1655). It is the examiner who takes decisions on any supportive measures, based on what kind of certificate is issued, and in that case which measures are to be applied.
Suspicions of attempting to deceive in examinations (cheating) are reported to the Vice-Chancellor, in accordance with the Higher Education Ordinance, and are examined by the University’s Disciplinary Board. If the Disciplinary Board considers the student to be guilty of a disciplinary offence, the Board will take a decision on disciplinary action, which will be a warning or suspension.
Grade
Pass, Fail