

Industry 4.0 - Introduction

MÄLARDALEN UNIVERSITY SWEDEN

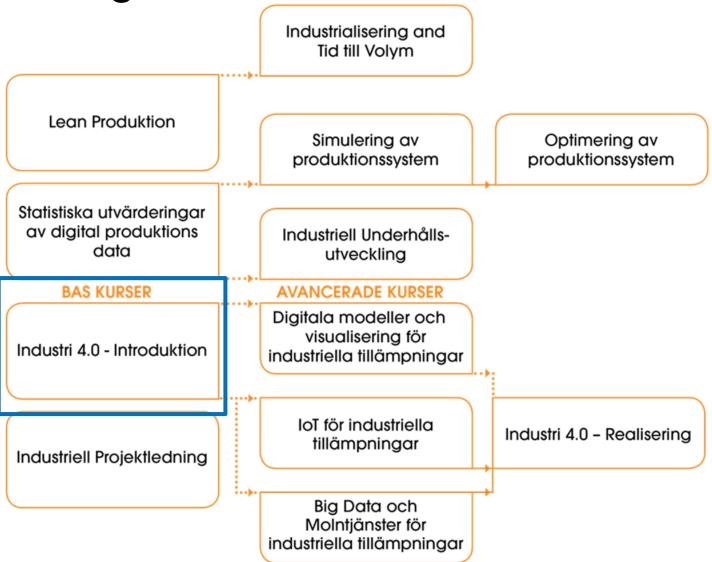
A seminar about what we are doing and learning in this course

Course code: PPU213

ECTS: 5 (33% ~12-13 hours/week)

Level: First cycle

Mats Ahlskog, Researcher at MDH and course responsible



Outline

- Background
- About the course
- Some examples from the different areas/lectures covered in the course
- Additional information

Background

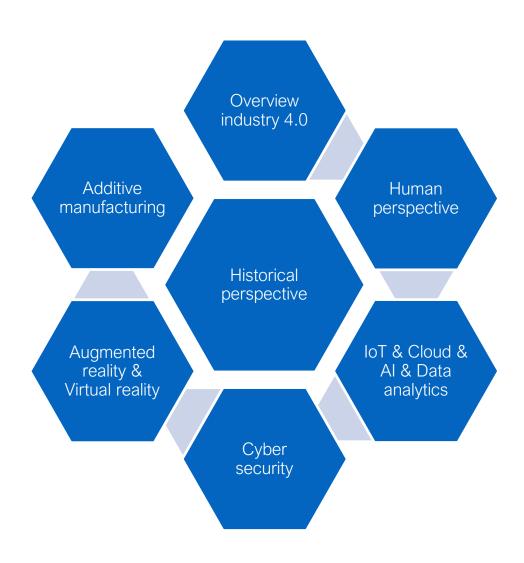
Background: Industry 4.0 Introduction

- This course provides basic knowledge of industry 4.0. The course gives insight and understanding of the 4th Industrial revolution and how it will impact on the industry and humans. The aim is to give a conceptual understanding of how an industry 4.0 system can be built up and run, as well as an overall understanding of which technologies can be included.
- The course includes the following parts
 - Introduction to Industry 4.0
 - Introduction to the main technologies in Industry 4.0
 - The economic drivers for implementing Industry 4.0 technology
 - The production and development engineer's role in development of future production system
 - The impact of digitization on industry and human beings

The main target group is people in need of understanding the principles of Industry 4.0. The focus is production but anyone from another functions can take this course.

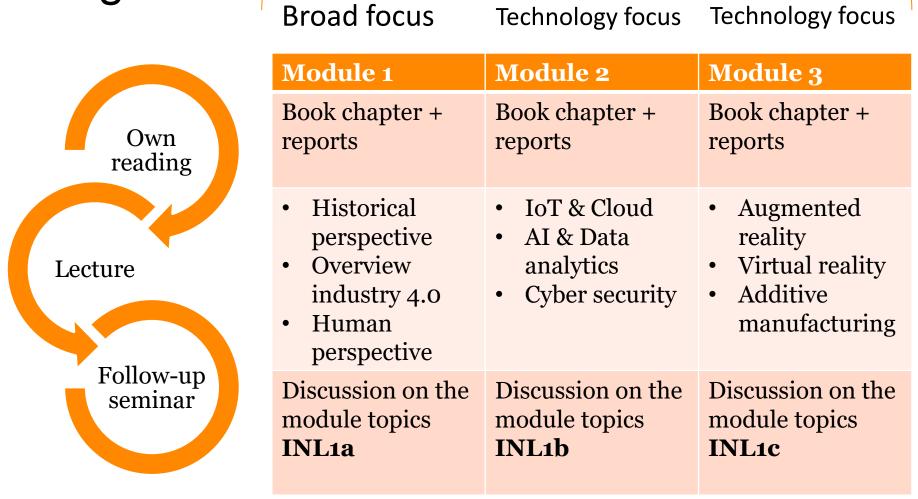
Background

- This a new course that is given for the first time
- This course was supposed to be held with a combination of meetings at MDH and online


Snabb omställning till digital kurs för industrin

Efter ett intensivt omställningsarbete kunde fortbildningskursen Industri 4.0 – introduktion, starta helt digitalt 30 mars. Kursen var planerad att ges med både fysiska och digitala träffar samt laborationer, men Coronakrisen gjorde att den efter ett intensivt arbete konverterades till helt digital.

 https://www.mdh.se/samverkan/fortbildning-och-kompetensutvecklingfor-yrkesverksamma/kompetensutveckling-med-premium



Areas covered

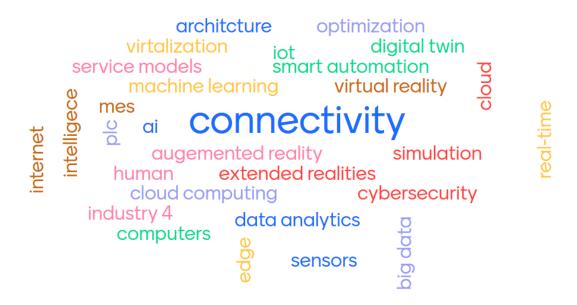
Course design

A combination of broad and narrow focus is needed

All material in the course is digital

Course assignments

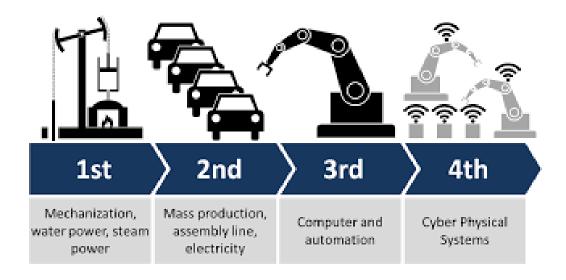
Assignments	What	When	How	Why
INL1	Three written assigments based on the moduels in this cours	After each modul	Individual	Check knowledge and way of thinking
Canceled due to Covid-19 LAB	FESTO equipment at MITC AR & VR	One day	Individual	Increase knowledge about digital technologies and relationships
Replacement for the LAB INL2	Identification of challenges and possibilities - from a report	During the course – final seminar in the end of the course	Individual or group	Increase knowledge about challenges and possibilities
PRO1	Assessment of your companies maturity level – predefined frameworks	During the course – final presentation in the end of the course	Individual or group	Reflection Bring something back to the company


Teachers

Namn	Roll	E-post	Area
Mats Ahlskog	Examiner, Teacher	mats.ahlskog@mdh.se	Historical perspective
Filip Flankegård	Assistant Teacher	filip.flankegard@mdh.se,	
Alessio Bucaioni	Teacher	alessio.bucaioni@mdh.se	Introduction to Ind 4.0
Rachel Tripny Berglund	Teacher	rachael.tripney.berglund@mdh.se	Human perspective
Moris Benham	Teacher	moris.behnam@mdh.se	IoT & Cloud
Markus Bohlin	Teacher	markus.bohlin@mdh.se	Al & Data analytics
Francesco Flammini	Teacher	francesco.flammini@mdh.se	Cybersecurity
Christopher Gustafsson	Teacher	christopher.gustafsson@mdh.se	Additive Manufacturing
Barrett Sauter	Teacher	barrett.sauter@mdh.se	AR & VR

I wanted to include as many as possible different knowledge domains and perspectives in this course

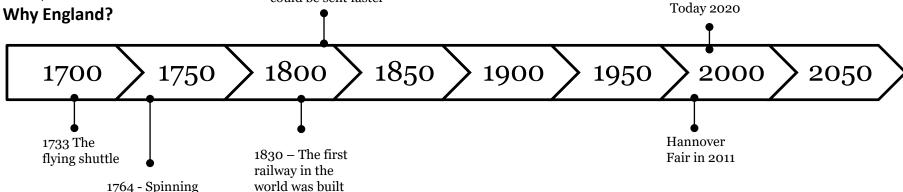
Introduction to the main technologies and terminology


Module 1 – Broad focus

- Historical perspective Mats Ahlskog
- mats.ahlskog@mdh.se
- Overview industry 4.0 Alessio Bucaioni
- alessio.bucaioni@mdh.se
- Human perspective Rachel Tripny Berglund
- rachael.tripney.berglund@mdh.se
- I have borrowed some slides from their lecturers

Module 1 – Broad focus

- What is Industry 4.0?
- That is something we discuss during the course
- Industry 4.0, was first declared by German government during Hannover Fair in 2011 as the beginning of the 4th industrial revolution.


Module 1 – Timeline 1st Ind. revolution

Where started the first industrial revolution?

The first industrial revolution is generally said starting in the beginning of the 1700's England who is the cradle of modern industry (Bellgran and Säfsten, 2010; Marks, 2002).

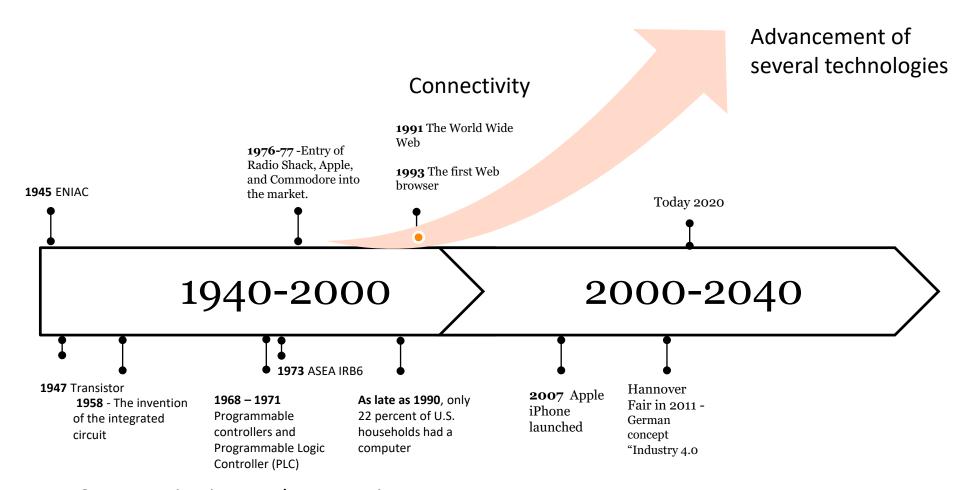
Communication

1844 - Baltimore and Washington shared the world's first telegraph line and by using this innovation, news could be sent faster

Textile industry

Jenny

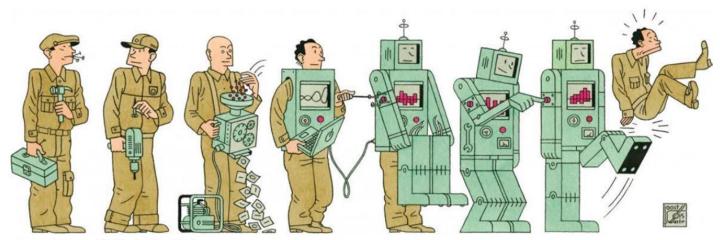
Transportation of people and material


between Manchester and Liverpool

Module 1 – Timeline 3rd Ind. revolution

3rd Industrial revolution

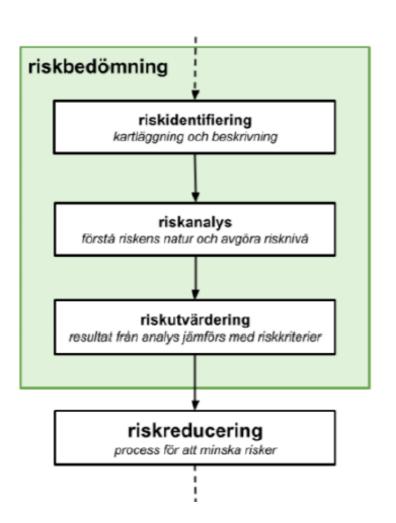
4th Industrial revolution



Computerization and automation

- Based on the past what will happen?
- How will this digital transformation affect us as humans?

14.0 FUTURE WORKFORCE


- Change management (digitalization) from a human perspective
- Work environment

Do no harm

Orsak	Antalet dödsfall om året
Stress	772
Skiftarbete	728
Motoravgaser	545
Damm, Kol	421
Asbes	267
Passivrökning	195
Kvarts damm	125
Svetsrök	71
Olyckor	37

Module 1 – Some examples from follow-up seminar

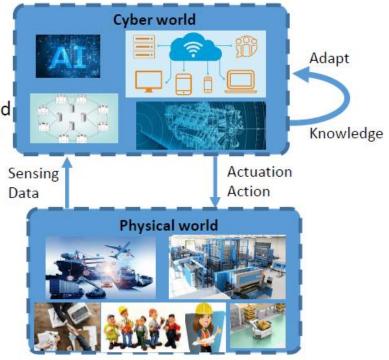
- People will lose their jobs in some areas
- Lifelong learning
- Laws & Regulations
- More work from home
 - Less social interaction
 - Difficult to separate work and private life
- Less distinction between white and blue collars
- Bigger gap between specialists and generalists/workers prevalence and domination of AI and robotics in offices and workspace

Module 2 – Technology focus

- IoT & Cloud Professor Moris Benham moris.behnam@mdh.se
- 2. AI & Data analytics Professor Markus Bohlin <u>markus.bohlin@mdh.se</u>
- 3. Cybersecurity Professor Francesco Flammini <u>francesco.flammini@mdh.se</u>
- I have borrowed some slides from their lecturers

Industry 4.0

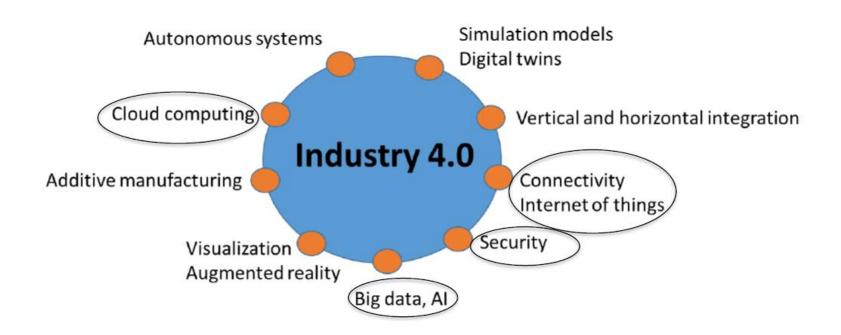
The Fourth Industrial Revolution


First Industrial Second Industrial Third Industrial Fourth Industrial Revolution Revolution Revolution Revolution Interconnected products · Labor organization, · First step regarding · Introduction of and services thanks to the mechanical mass production, use automation, with new digital technologies production of electricity electronics and tools computer science entering companies 1780: 2011: 1870: First loom 1970: First assembly First appearence powered by First PLCs line of "Industry 4.0" steam Cyber physical systems

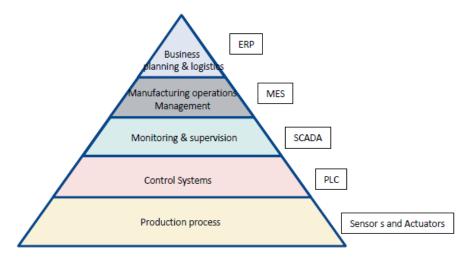
Cyber-physical systems CPS

 CPS: It is the integration of Cyber world, computation & network, and physical processes.

 Its purpose is to control a physical process and adapt itself in real-time to new conditions in order to optimize the performance.

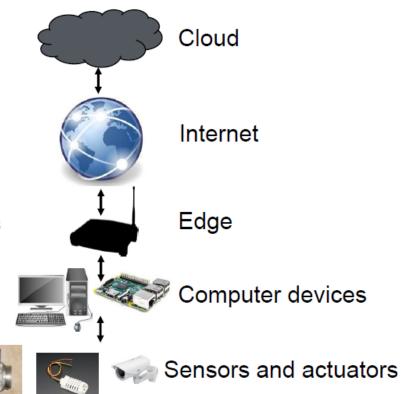

- It allows creation of autonomous and cooperative elements and sub-systems, with the purpose of optimization production processes.
- CPSs can be considered as Digital Twins DT
- CPS academia, DT industry

Industry 4.0 technologies



Traditional automation in manufacturing

 The automation pyramid provides a hierarchical structure that allows the various technologies and systems used for planning, managing, and assessing the value creation process to be assigned to various levels of the company.



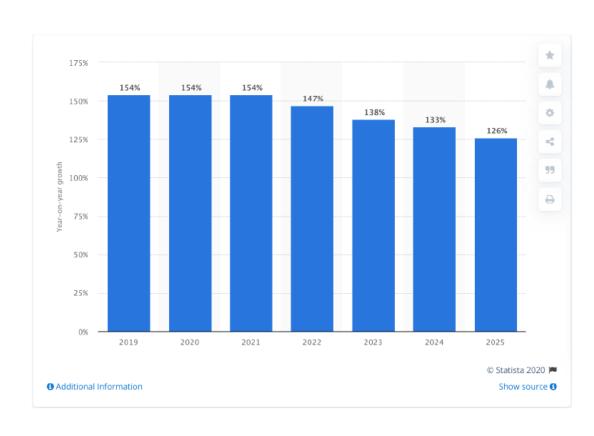
In practice, the lines between the levels are often blurred, and the individual levels can rarely be clearly identified.

IoT Architecture

- Sensors: used to measure the environment, actuators are taking actions to change the environment
- Computers: Read the sensor measurements and transfer it to the internet
- Edges: connect the computers to the internet
- Internet: transferring the data to the Cloud
- Cloud: provides storage and computation power for the analysis and decision making
- Different data communication technologies are used between levels

What's in the cloud?

Service models


- 1- Cloud Software as a Service (SaaS)
- 2- Cloud Platform as a Service (PaaS)
- 3- Cloud Infrastructure as a Service (laaS)

Module 2 – Al & Data analytics

What is A.I.?

"Our intelligence is what makes us human, and AI is an extension of that quality." – Yann LeCun Professor, New York University

Module 2 – Al & Data analytics Al: Past, Present and Future

The Turing test

"I propose to consider the question, 'Can machines think?'" (A. Turing, 1950)

An interrogator asks questions to an (unseen) person A. If A is replaced by an AI, can the interrogator detect this or not?

Expert systems boom: 1980-1987

Rule-based, logical systems

Selection of components based on customer requirements 5th gen project (Japan) Neural networks.

backprop.

Goals fulfilled: 1993-2011

<u>Deep Blue (1997)</u>

Victory of the "neats" (2003)

<u>DARPA Grand</u> Challenge (2005)

AI untold successes in data mining, robotics, logistics, speech recognition, search engines Deep learning, big data and general AI: 2011-present

Access to large amounts of data

Faster computers

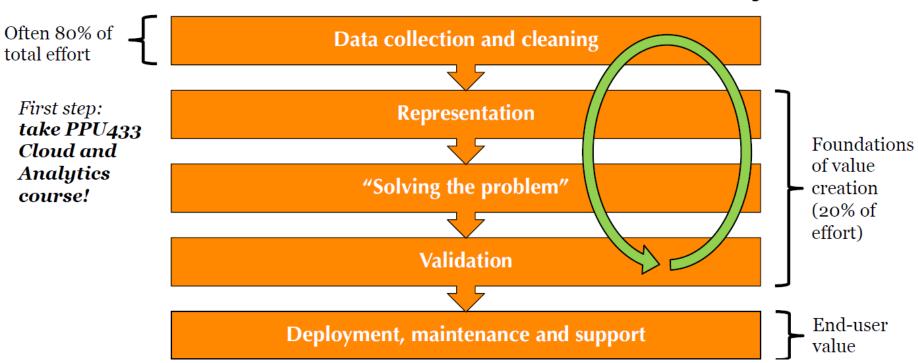
Deep learning drives progress in image and video processing, text analysis, speech recognition

Google DeepMind defeats world champion in Go (2016)

Widespread discussions around Strong AI: superhuman intelligence

Golden years: 1957-1974

Symbolic AI, search algorithms, neural nets, industrial robots, etc.


Module 2 – Al & Data analytics

- Basic introduction to:
- Different challenges within A.I.
- The Industrial A.I. stack
- Data cleaning and preparation
- Optimization in artificial intelligence
- Some problems in Machine Learning
 - Overtraining

Module 2 – Al & Data analytics

The Industrial A.I. stack in reality

Module 2 – Cybersecurity

Definition of cybersecurity

Complex concept, no single definition!

Definition of CYBERSECURITY

Popularity: Bottom 50% of words

measures taken to protect a computer or computer system (as on the Internet) against unauthorized access or attack

Cybersecurity is the art of protecting networks, devices, and data from unauthorized access or criminal use and the practice of ensuring confidentiality, integrity, and availability of information. (https://www.us-cert.gov/ncas/tips/ST04-001)

Module 2 – Cybersecurity

Holistic vision of cybersecurity

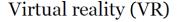
- Focus on:
 - People education, awareness, etc.
 - Process procedures, regulations, etc.
 - Technology intrusion detection systems, antivirus, etc.

Module 2 – Cybersecurity

- Importance of cybersecurity
- Cybersecurity in Industry 4.0
- Cyber-physical systems (CPS) security
- Security threats to intelligent systems
- Vulnerability Assessment
- Examples of some classic cyberattacks (STUXNET, Denial of Service (DoS) attacks
- Etc.

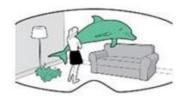
- Augmented reality & Virtual reality Barrett Sauter
- barrett.sauter@mdh.se
- Additional lectures Not covered in this presentation
- FESTO-Overview Leo Hatvani
- <u>leo.hatvani@mdh.se</u>
- Special lecture From theory to practice how to implement Ind 4.0 Mats Ahlskog
- Not covered in this presentation lecture next week
- Additive manufacturing Christopher Gustafsson
- <u>christopher.gustafsson@mdh.se</u>
- I have borrowed some slides from their lecturers

Module 3 - Augmented reality


Agenda Agenda

- What are eXtended Realites?
- Augmented Reality (AR)
 - AR examples
 - Industrial AR applications
 - Case studies
 - Industrial AR challenges
- Virtual Reality (VR)
 - VR examples
 - Industrial VR applications
 - Case studies
 - Industrial VR challenges


Module 3 - Augmented reality


eXtended Reality: a range of technologies. Includes virtual & augmented reality environments

- User sees full digital world through headset
- Creator has much control, can show viewer exactly what they want
- Relatively high resources needed to produce

Augmented reality (AR)

- User sees digital information overlayed on the real world
- Content needs to be integrated with real world objects
- Relatively lower resources needed to produce

Module 3 - Augmented reality

MÄLARDALIA DIVVERSITY SWEEK

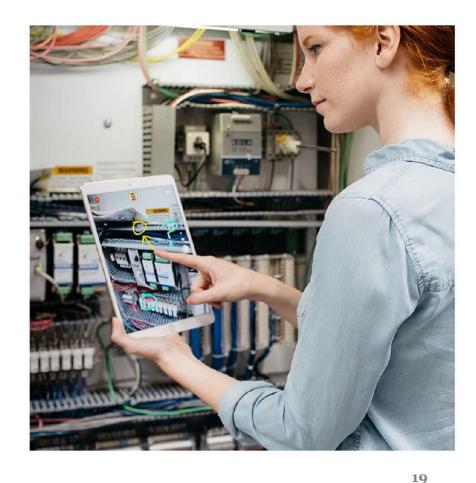
eXtended Realites

Virtual Reality (VR)

Augmented Reality (AR)

Module 3 - Augmented reality

Case Studies


Remote maintenance

Ex: Toyota

What: remote assistance and communication while adhering to strict privacy regulations

Use: Chalk is used to connect experts with workers both inside and outside of their organization via mobile or tablet. Chalk combines live video, audio and ability for both participants to draw digital annotations on the live shared view.

Results: Subcontractors are able to tackle complex or unfamiliar challenges with the help of an expert when and where they need it. Company has adopted Chalk because of its security control functions.

Module 3 - Augmented reality & Virtual reality

Why are these

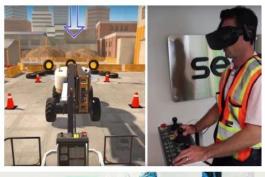
tools

important?

The real world is 3D. Most data is trapped on 2D screen and

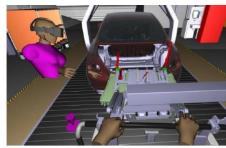
pages.

XR speeds up our ability to

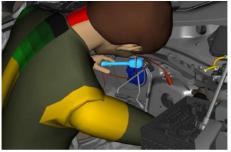

understand the problem and act

on it.

General VR Uses



- Entire digital environments
- Training simulations
- Distance work collaboration
- Product development

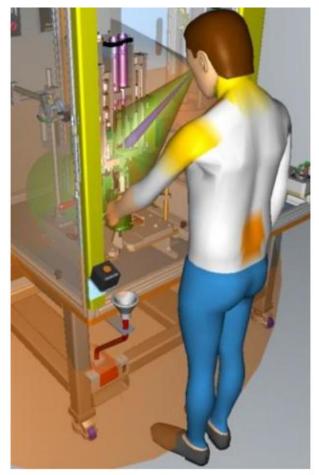


Industrial VR applications

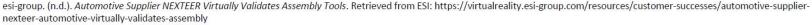
- Product design & virtual prototyping
- Virtual factory
 - Planning, simulation & training
- Assembly & service
 - Training
 - Quality assurance
- Fault diagnosis

25

Damiani, L. e. (2018). Augmented and virtual reality applications in industrial systems: A qualitative review towards the industry 4.0 era. IFAC PapersOnLine (pp. 624-630). Elsevier.


Virtual factory

Ex: Automotive supplier


What: Virtually validated assembly

Use:virtual tool used for design and validation of elements such as space, human-factors and maintenance walidation. CAD drawings or mock-ups previously used.

Results: virtual build allowed for inspectors to walk around 1:1, inspect, interact, even operate the new subassembly long before first parts were made. Able to identify undesirable or dangerous conditions in time.

Industrial VR advantages

- Visualization
 - VR makes it easier to view the effects of complex data and interactions in models
 - Additional views and navigation of a model not viewable with 2-D and in some cases difficult to see with screenbased 3-D prepresentations are possible with VR
- Understanding
 - Ability to capture and compare the virtual and physical state of objects
- Communication
 - Aids in communicating changes to both internal and external organizations

29

Turner, C. e. (2016). Discrete Event Simulation and Virtual Reality Use in Industry: New Opportunities and Future Trends. IEEE Transactions on Human-Machine Systems, Vol. 46, No. 6, 882-894.

Additional information

Lifelong Learning at Mälardalen University

- Courses for professionals
- Developed in close cooperation with industry

Production Engineering

- Industry 4.0
- · Lean Production
- Simulation

Software Engineering

- · Dependable Software
- Internet-of-Things
- Software Test

Applied AI

- Big Data
- Machine Learning
- Predictive Analytics

- · Gives university credits
- Free-of-charge for employees in Sweden and EU/EEA and Swiss citizens

Environmental and Energy Engineering

- Circular Economy
- Climate Change
- Sustainable Development

Innovation Management

- · Trendspotting and scenariodesign
- Innovation Management

mdh.se/en/malardalen-university/education/further-training

Seminar series Industry 4.0

Date	Title	Teacher
May 15	Industrial Internet of Things and the Opportunities in Manufacturing	Mohammad Ashjaei & Moris Behnam
May 29	Artificial Intelligence	Markus Bohlin
June 5	Simulation for evaluation and improvement of production systems	Ioanna Aslanidou
June 12	Introduction to industrial cybersecurity	Francesco Flammini
June 26	AR and VR for Industry 4.0: From Development to Maintenance	Leo Hatvani
August 14	Maintenance	Antti Salonen
August 21	Additive Manufacturing – The MDH way	Christopher Gustafsson
August 28	Cobot	Mikael Hedelind
September 4	Optimization of Production Systems	Konstantinos Kyprianidis & Yuanye Zhou & Stavros Vouros
September 11	Industrialization: a multiple perspectives	Koteshwar Chirumalla

Production engineering courses autumn 2020

(5 credits/course)

Lean production

Study period 2020-08-31 - 2020-11-08

• Internet of Things for the manufacturing industry

Study period 2020-08-31 - 2020-11-08

Simulation of production systems

Study period 2020-08-31 - 2020-11-08

• Big Data and Cloud Computing for Industrial Applications

Study period 2020-11-09 - 2021-01-17

Industrial maintenance development

Study period 2020-11-09 - 2021-01-17

For more information, visit <u>mdh.se/premium</u>

Production engineering courses spring 2021

(5 credits/course)

Optimization of production systems

Study period 2021-01-18 – 2021-03-28

Visualization for industrial applications

Study period 2021-01-18 – 2021-03-28

• Industry 4.0 – Introduction

Study period 2021-03-29 - 2021-06-06

Industry 4.0 – Realisation

Study period 2021-03-29 - 2021-06-06

Industrialization and Time-to-Volume

Study period 2021-03-30 - 2021-06-08

For more information, visit mdh.se/premium

Questions & Answers